5.2.1 Lattice Enthalpy

Mark scheme - Lattice Enthalpy

Questio n		Answer/Indicative content	Marks	Guidance
1	i	$\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}(\mathrm{~g})+2 \mathrm{e}^{-} \checkmark \\ & \mathrm{Mg}(\mathrm{~s})+\mathrm{Br}_{2}(\mathrm{l}) \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 1.2 \times 2) \end{gathered}$	State symbols required. CARE: Liquid state symbol for Br_{2} Examiner's Comments Many candidates got the second ionisation energy equation. Very few candidates got the correct state symbol on the lower line for Br_{2}, with solid being the common response.
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -346.5 award 2 marks $2 \Delta H$ hyd $=$ $\begin{aligned} & -525-186-(2 \times 112)-148-736-1450+(2 \times-325) \\ & +1926 \end{aligned}$ OR $-525-186-224-148-736-1450+650+1926$ OR $=-693 \sqrt{ }$ ΔH hyd $=-346.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	$\begin{gathered} 2 \\ (\mathrm{AO} \\ 2.2 \times 2) \end{gathered}$	ALLOW -347 (kJ mol${ }^{-1}$) for $\mathbf{2}$ marks. ALLOW for 1 mark ONE error with sign OR use of 2 : -693 (not divided by 2 at the end) 346.5 (wrong sign on answer) Common errors for 1 mark $\begin{aligned} & -2272.5(-1926 \text { instead of } 1926) \\ & -1386(2 \times-693 \text { instead of }-693) \\ & -996.5(-650 \text { instead of } 650) \\ & -509(2 \times 325 \text { not used }) \\ & -290.5(2 \times 112 \text { not used }) \\ & -198.5(148 \text { instead of }-148) \\ & -160.5(186 \text { instead of }-186) \\ & -122.5(224 \text { instead of }-224) \\ & 178.5(525 \text { instead of }-525) \\ & 389.5(736 \text { instead of }-736) \\ & 1103.5(1450 \text { instead of }-1450) \end{aligned}$ For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors e.g. -453 ($\mathbf{2} \times 325$ not used AND 2×112 not used)
		Equation: $\quad \mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Br}^{-}(\mathrm{g}) \rightarrow \mathrm{MgBr}_{2}(\mathrm{~s}) \checkmark$ CHECK THE ANSWER ON ANSWER LINE If answer = - 2433 award 2 marks \qquad $\begin{aligned} & \text { Lattice enthalpy }= \\ & \Delta_{\mathrm{hy}} H\left(\mathrm{Mg}^{2+}\right)+2 \times \Delta_{\mathrm{hy}} H(\mathrm{Br})-\Delta_{\mathrm{sol}} H\left(\mathrm{MgBr}_{2}\right) \text { OR } \\ & -1926+(2 \times-346.5)-(-186) \end{aligned}$	$\begin{gathered} 3 \\ (\mathrm{AO} \\ 1.2) \\ \\ \\ \\ (\mathrm{AO} 2.2 \\ \times 2) \end{gathered}$	State symbols required For other answers, check for a single transcription error or calculation error which could merit 1 mark DO NOT ALLOW any answer which involves two errors

5.2.1 Lattice Enthalpy

		OR $\Delta_{\mathrm{i}} H\left(\mathrm{MgBr}_{2}\right)-2 \Delta_{\mathrm{a}} \mathrm{H}(\mathrm{Br})-\Delta_{\mathrm{a}} H(\mathrm{Mg})$ -1 st IE(Mg) - 2nd IE(Mg) $-2 \Delta_{\text {ea }} H(B r)$ OR $-525-(2 \times 112)-148-736-1450-(2 \times-325) \vee$ Lattice enthalpy $=-2433 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$		ALLOW ECF from incorrect answer to (ii) Examiner's Comments This Born Haber cycle combined the traditional cycle with the enthalpy solution/hydration cycle. Many candidates were successful in calculating the values from the information given and showed full working to complete the calculation. The commonest errors were not doubling the atomisation and electron affinity values (112 and 325) and not dividing the enthalpy of hydration by two. Some candidates did not show working or just listed numbers. Candidates should remember to provide written indications of what it is they are working out - presenting the calculations without any annotations can make it harder for error carried forward marks to be given if there is an error in their calculation. Some candidates did not produce an equation for (iii) and wrote the lattice enthalpy sum in its place.
		Total	7	
2	a		$\begin{gathered} 4 \\ (\mathrm{AO} 1.2 \\ \times 4) \end{gathered}$	Mark each marking point independently Correct species AND state symbols required for each mark For e^{-}, ALLOW e For e^{-}only, IGNORE any state symbols added Examiner's Comments Some candidates wrote illegible state symbols where (g) and (s) were impossible to tell apart. Also, many candidates choose to write state symbols as a very small sub-script e.g. $2 \mathrm{~K}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}$. The convention is to use lower case letters of normal size e.g. $2 \mathrm{~K}(\mathrm{~s})+$ $1 / 2 \mathrm{O}_{2}(\mathrm{~g})$ Exemplar 1

5.2.1 Lattice Enthalpy

				In this exemplar it was impossible to tell if K had (s) or (g) as a state symbol. Consequently, no marks could be given.
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{- 2 2 7 7}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award $\mathbf{2}$ marks $\begin{aligned} & -363-(2 \times+89+249+2 \times 419-141+790) \checkmark \\ & -363-1914 \\ & =-2277 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.2 \\ \times 2) \end{gathered}$	IF there is an alternative answer, check to see if there is any ECF credit possible using working below See list below for marking of answers from common errors ALLOW for 1 mark ONE mistake with sign OR use of $2 \times$: +2277 (wrong sign) $-601(2 \times-419$ instead of $2 \times+419)$ $-697(-790$ instead of +790$)$ -1551 (+363 instead of -363) $-1858(2 \times+419$ not used for K) $-1921(2 \times-89$ instead of $2 \times+89)$ -2152.5 or $-2153(+249 \div 2)$ -2188 ($2 \times+89$ not used for K) -2280 (rounded to 3SF) -2559 (+141 instead of -141) For other answers, check for a single transcription error or calculator error which could merit 1 mark Examiner's Comments Most candidates scored both marks. Candidates tended to forget the mole ratio of K meant its values should be multiplied by 2 in two places during this calculation.
		For sodium atomic radius smaller OR fewer shells \checkmark nuclear attraction increases OR (outer) electron(s) experience more attraction \checkmark	$\begin{gathered} 2 \\ (A O 1.1 \\ \times 2) \end{gathered}$	ALLOW ' Na /sodium is smaller' IGNORE smaller radius / fewer shells / less shielding if applied to ions but DO NOT ALLOW responses which refer to ions losing electrons DO NOT ALLOW molecules ALLOW energy levels for shells IGNORE fewer orbitals OR fewer sub-shells ALLOW less (electron) shielding OR electron repulsion between shells IGNORE just 'shielding' ALLOW more/stronger/bigger nuclear attraction etc IGNORE 'pull' for attraction IGNORE electrons more tightly held IGNORE 'nuclear charge' for 'nuclear attraction'

5.2.1 Lattice Enthalpy

			IGNORE more energy (in question) ALLOW reverse argument for potassium throughout Examiner's Comments Candidates coped well with this question which was based on the AS part of the specification. Some candidates gave vague and unnecessarily long responses to this question.
	Comparison of size of cations For sodium ions ionic radius of sodium / Na^{+}is smaller \checkmark Comparison of attraction of cation and anion Na^{+}has stronger attraction to $\mathrm{O}^{2-} \checkmark$	$\begin{gathered} 2 \\ (A O 1.2 \\ \times 2) \end{gathered}$	comparison of IONS is essential ALLOW Na+ has a larger charge density IGNORE 'Na has smaller atomic radius' but DO NOT ALLOW contradictory sentences eg 'Na+ ions have smaller atomic radius' IGNORE pull for attraction ALLOW 'sodium ion' and 'oxygen ion' IGNORE just 'oxygen' or just 'O' for oxygen ion ALLOW stronger attraction between oppositely charged ions Examiner's Comments Many candidates did not achieve full marks, often through ambiguous statements. A typical example is shown in the exemplar below. Exemplar 4 If taikes less energs to form the bonds is sollium oxive as apposed op potassion oxive due to its smaller fonic size marmin it easier for the aygen [2] to hand. The exemplar here uses the vague term 'due its smaller ionic size'. It is unclear which of the ions the candidate is referring to (or if they're assuming that the metal oxide entity is an ion) and so they could not be given marks.. Also, it is oxygen ions that 'bond' - the reference to oxygen bonding in the response is not specific enough.
	Total	10	

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

 (

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

	i	Correct comparison of $\Delta_{\text {hyd }}$ linked to sizes $\Delta_{\text {hyd }} H\left(\mathrm{~F}^{-}\right)$more negative/exothermic (than $\Delta_{\text {nyd }} H(C)$) AND F^{-}has smaller size (than Cl^{-}) \checkmark Comparison of attraction between ions and water F^{-}OR smaller sized ion linked to greater attraction to $\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ORA IGNORE 'atomic' before radius when comparing size of ions IGNORE charge density IGNORE electronegativity IGNORE nuclear attraction DO NOT ALLOW 'forms stronger hydrogen bonds with water' OR 'forms stronger van der Waals' forces with water' ALLOW 'forms bonds' for attraction' DO NOT ALLOW F^{-}greater attraction to $\mathrm{H}_{2} \mathrm{O}$ if given as larger ion Assume 'F' / 'Fluorine' means 'ions' but DO NOT ALLOW 'F molecules' Examiner's Comments When comparing enthalpy changes candidates need to be aware that descriptions such as 'bigger' or 'smaller' are meaningless as there are often negative signs involved. The correct description required here was that the enthalpy change of hydration of F^{-}ions would be more negative than that of Cl^{-}ions. Although some candidates wrote in terms of charge density, it was those candidates who related the smaller size of the F^{-}ion to the difference in enthalpy change of hydration who received credit and went on to say that this was as a consequence of greater attraction to water molecules.
		Total	10	
5	i	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_{\text {sol }} \mathrm{H}=\mathbf{- 4 3 . 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks Energy released in JOR kJ $=113.42 \times 4.18 \times 10.5=4978(\mathrm{~J}) \text { OR } 4.978(\mathrm{~kJ}) \checkmark$ Correctly calculates $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ $\frac{11.28}{98.1}=0.115(\mathrm{~mol}) \checkmark$ ΔH value in J OR kJ Answer MUST divide energy by $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$	4	FULL ANNOTATIONS MUST BE USED Calculator: 4978.0038 DO NOT ALLOW less than 3 SF IGNORE units ALLOW correctly calculated number in J OR kJ Calculator 0.1149847095

5.2.1 Lattice Enthalpy

		$(-) \frac{4978}{0.115} \text { OR (-)43286(J) }$ OR $(-) \frac{4978}{0.115} \text { OR }(-) 43.3(\mathrm{~kJ}) \checkmark$ (Sign ignored and/or more than 3 SF) Correct $\Delta_{\text {sol }} H$ in kJ AND - sign AND 3 SF $=-43.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$		ALLOW ECF from $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ AND/OR Energy Calculator from 4978 and $0.115=$ 43286.95652 From unrounded values, $=$ 43292.74581 IGNORE absence of - sign and $\mathbf{3}$ SF requirement Final mark requires - sign, kJ AND 3 SF NOTE: Use of 100 for $m \rightarrow 4389 \mathrm{~J}$ ECF available for $\rightarrow-38.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (3 marks)
	ii	$\frac{0.5}{10.5 \times 100 \times 2=9.5 \% \checkmark}$ One decimal place required	1	
	iii	Predictions ΔT is less AND $\Delta_{\text {sol }} H$ is the same $\sqrt{ }$ Reason for ΔT less (same) energy/heat spread over larger volume (of water) $\Delta T=7^{\circ} \mathrm{C}, ~$ Reason for $\Delta_{\text {sol }} H$ same Same energy released per mole of $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$	4	ALLOW heat spread over more water ALLOW 6-8 ${ }^{\circ} \mathrm{C}$ Note: m is $\sim 1 / 3$ larger. $q=m c \Delta \mathrm{~T}$ and so ΔT will be $\sim 1 / 3$ smaller ALLOW $\Delta_{\text {sol }} \mathrm{H}$ is for dissolving 1 mol
		Total	9	
6	a	(enthalpy change for) 1 mole of gaseous ions OR 1 mole of hydrated ions / aqueous ions \checkmark gaseous ions forming aqueous / hydrated ions \checkmark	2	one mole can be stated just once EITHER with gaseous ions OR with aqueous ions, e.g. - 1 mole of gaseous ions forms hydrated ions / aqueous ions - Gaseous ions form 1 mole of hydrated ions / aqueous ions ALLOW 1 mol for 1 mole IGNORE 'energy released’ OR 'energy required'

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

				significant number of candidates used the wrong enthalpy change (or no enthalpy change at all) or mixed units of J and kJ . Answer: $\Delta G=-43 \mathrm{~kJ} \mathrm{~mol}^{-1}$
		Total 12		
7	i		4	Correct species AND state symbols required for each marks ALLOW e for e^{-} TAKE CARE: In top left box, e^{-}may be in centre of response and more difficult to see than at end. There is only ONE correct response for each line From the gaps in the cycle, there is NO possibility of any ECF Examiner's Comments Many candidates completed the Born-Haber cycle to obtain three out of the four available marks. Strangely, very few candidates showed the correct species in the bottom box for the elements under standard conditions. Almost invariable, iodine was shown incorrectly, usually as $\mathrm{I}_{2}(\mathrm{~g})$ or $21(\mathrm{~g})$. The other three boxes were usually correct although sometimes state symbols had been omitted or electrons had been included together with the gaseous ions in the top right box. Candidates are advised to check carefully between stages in the cycle to ensure that all species charges and state symbols are included and accounted for.
		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed / made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $\mathrm{Fe}^{2+}(\mathrm{g})+2 \mathrm{I}^{-}(\mathrm{g}) \rightarrow \mathrm{Fel}_{2}(\mathrm{~s})$ (Part of cycle) ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) \checkmark

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

				-2366 or $-2661 \mathrm{~kJ} \mathrm{~mol}^{-1}$, or use of incorrect signs. There were more transcription errors seen than in previous session, most notably, -113 shown as -133 . Candidates are advised to check carefully that any balancing numbers are linked to the correct enthalpy changes in the cycle and to double check values for possible transcription errors. Answer $=\mathbf{- 2 4 7 3} \mathrm{kJ} \mathrm{mol}^{-1}$
		Total	8	
8	a		3	Mark each marking point independently Correct species AND state symbols required for each mark For S^{2-}, DO NOT ALLOW S ${ }^{-2}$ For e^{-}, ALLOW e For e^{-}only, IGNORE any state symbols added ALLOW k and s It can be very difficult distinguishing K from k; S from s Examiner's Comments Many candidates successfully completed the Born-Haber cycle to obtain all three marks. The species including any ionic charges and state symbols were almost always correct but sometimes one or more state symbols had been omitted. The commonest error was in the number of electrons in the middle stage; some showed two electrons and the electron was more often omitted entirely. Candidates are advised to check carefully between stages in the cycle to ensure that all species charges and state symbols are accounted for and included.
	ii	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark	2	IGNORE ‘Energy needed’ OR ‘energy required' ALLOW one mole of compound is formed / made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $2 \mathrm{~K}^{+}(\mathrm{g})+\mathrm{S}^{2-}(\mathrm{g}) \rightarrow \mathrm{K}_{2} \mathrm{~S}(\mathrm{~s})$ (question asks for words)

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

				ionic size with attraction and then to the energy required to overcome the attractive force. Precision in language is always essential here and many candidate spoilt their response by use of incorrect particles. It was very common to see terms such as 'atomic radius, molecules, van der Waals' forces and ionic radius of NaBr . Some candidates simply compared the radii, the skill required for the first marking point.
		Total	10	
9	a	solution: (enthalpy change for) 1 mole of a compound / substance / solid / solute dissolving in water	1	IGNORE 'energy released' OR 'energy required' For dissolving, ALLOW forms aqueous / hydrated ions DO NOT ALLOW dissolving elements IGNORE ionic OR covalent DO NOT ALLOW response that implies formation of 1 mole of aqueous ions
	b		3	Correct species AND state symbols required for each mark. (mark independently) On middle line, ALLOW $\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{C} /(\mathrm{aq})$ (i.e. Cl^{-}hydrated before Ca^{2+}) On bottom line, ALLOW CaCl2(aq)
		FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks \qquad $\Delta_{\mathrm{sol}} \mathrm{H}\left(\mathrm{CaC}_{2}\right)=[-1616+(2 \times-359)]-(-2192)$ OR - $2334+2192$ $=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using the working shown. IF ALL 3 relevant values from the information at the start of Q3 have NOT been used, award zero marks unless one number has a transcription error, where 1 mark can be awarded ECF
		Comparison of size $\mathrm{Ca}^{2+}>\mathrm{Mg}^{2+}$ Comparison of charge $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$ Comparison of attraction between ions size AND charge linked to greater attraction to $\mathrm{H}_{2} \mathrm{O}$ \checkmark	3	IGNORE comparison of size: $\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>$ Al^{3+}
	c	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=-132\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks \qquad Correctly calculates energy released in J OR kJ	4	FULL ANNOTATIONS MUST BE USED \qquad ALLOW calculator value of 6611.1507 down to 3 SF value of 6610

5.2.1 Lattice Enthalpy

5.2.1 Lattice Enthalpy

		FOUR correct (2) THREE correct (1) ii $-642-(+76+(2 \times 150)+736+1450+(2 \times-349))(1)$ $-642-1864=-2506(1)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	2	
		allow for 1 mark: $-2705(2 \times 150$ and 2×349 not used for C/) $-2356(2 \times 150$ not used for C/) $-2855(2 \times 349$ not used for C/) $+2506($ wrong sign $)$		

